0%

Eigen_1_理论基础

简介

  • Eigen 第三方库基础知识
  • Eigen,仅包含头文件即可

eigen3 Eigen::MatrixBaseEigen::Vector3d::normalized()函数 详解

Eigen::MatrixBase<Eigen::Vector3d>::normalized() 函数用于返回一个单位向量,即输入向量的归一化版本。这个函数返回一个新的向量,该向量具有与原始向量相同的方向,但长度为1。

下面是一些关键的详解:

1
Eigen::MatrixBase<Eigen::Vector3d>::normalized()
  • 返回类型: 返回类型是 Eigen::MatrixBase<Derived>,其中 Derived 表示输入矩阵或向量的派生类类型。

  • 用途: normalized() 函数用于将向量归一化,即将其缩放为单位长度。

  • 注意事项:

    • 如果输入向量的长度为零,则 normalized() 会产生一个未定义的结果。
    • 对于零向量,normalized() 返回与原始向量相同的零向量。
    • normalized() 函数不会修改原始向量,而是返回一个新的归一化向量。
  • 示例:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    #include <iostream>
    #include <Eigen/Dense>

    int main() {
    Eigen::Vector3d v(1.0, 2.0, 3.0);
    Eigen::Vector3d normalized_v = v.normalized();

    std::cout << "Original Vector: " << v << std::endl;
    std::cout << "Normalized Vector: " << normalized_v << std::endl;

    return 0;
    }

    这个示例中,normalized_v 将包含 v 的单位向量。

总的来说,normalized() 函数在Eigen库中是用于向量归一化的方便方法。归一化是在计算机图形学、机器学习和其他领域中经常使用的操作,它确保向量的长度为1,并保持原始向量的方向。

Eigen::Isometry3d 类 详解

Eigen::Isometry3d 是Eigen库中的一个类,用于表示三维空间中的等距变换(Isometry Transformation),也称为刚体变换(Rigid Transformation)。等距变换包括平移和旋转,通常用于表示物体在三维空间中的姿态和位置。

以下是关于 Eigen::Isometry3d 类的详细信息:

构造函数

1
Eigen::Isometry3d transform = Eigen::Isometry3d::Identity();

构造函数用于创建一个等距变换,通常初始化为单位等距变换,表示物体的初始位置和姿态。

成员函数

  1. translation()
    返回等距变换的平移部分,它是一个三维向量表示平移的位移。

  2. translation()(重载):
    设置等距变换的平移部分。

  3. rotation()
    返回等距变换的旋转部分,它是一个Eigen::Matrix3d表示旋转矩阵。

  4. matrix()
    返回等距变换的矩阵表示,是一个Eigen::Matrix4d矩阵。

示例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#include <iostream>
#include <Eigen/Geometry>

int main() {
// 创建等距变换,表示平移(1, 2, 3)并绕X轴旋转45度
Eigen::Isometry3d transform = Eigen::Isometry3d::Identity();
transform.translation() = Eigen::Vector3d(1.0, 2.0, 3.0);
transform.rotate(Eigen::AngleAxisd(M_PI / 4.0, Eigen::Vector3d::UnitX()));

// 获取平移部分和旋转部分
Eigen::Vector3d translation = transform.translation();
Eigen::Matrix3d rotation = transform.rotation();

// 输出结果
std::cout << "平移部分:" << translation.transpose() << std::endl;
std::cout << "旋转部分:" << std::endl << rotation << std::endl;

// 获取等距变换的矩阵表示
Eigen::Matrix4d transform_matrix = transform.matrix();
std::cout << "等距变换矩阵:" << std::endl << transform_matrix << std::endl;

return 0;
}

在上述示例中,我们创建了一个等距变换对象,并使用成员函数设置其平移部分和旋转部分。然后,我们分别获取了平移部分和旋转部分,并输出了等距变换的矩阵表示。

Eigen::Isometry3d 类是Eigen库中用于表示三维等距变换的重要工具。它允许您方便地表示和操作物体在三维空间中的姿态和位置,这在机器人学、计算机图形学和仿真等领域中非常有用。

Eigen::AngleAxisd 类 详解

Eigen::AngleAxisd 是Eigen库中的一个类,用于表示轴角(Axis-Angle)形式的旋转。轴角表示是一种用于描述三维空间中的旋转的常见方式,它包括一个旋转轴和一个旋转角度。该类位于Eigen库的Eigen/Geometry模块中。

以下是关于 Eigen::AngleAxisd 类的详细信息:

构造函数

1
Eigen::AngleAxisd(const Scalar& angle, const Vector3d& axis)
  • angle:旋转角度,以弧度表示。
  • axis:旋转轴的单位向量。

构造函数用于创建一个轴角表示的旋转,指定旋转角度和旋转轴。

成员函数

  1. angle()
    返回轴角表示中的旋转角度(以弧度表示)。

  2. axis()
    返回轴角表示中的旋转轴,它是一个单位向量。

  3. toRotationMatrix()
    将轴角表示转换为旋转矩阵(Eigen::Matrix3d),这个矩阵可以用于执行坐标变换。

示例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#include <iostream>
#include <Eigen/Geometry>

int main() {
// 创建轴角表示的旋转(绕X轴旋转45度)
Eigen::AngleAxisd rotation(M_PI / 4.0, Eigen::Vector3d::UnitX());

// 获取旋转角度和旋转轴
double angle = rotation.angle();
Eigen::Vector3d axis = rotation.axis();

// 输出结果
std::cout << "旋转角度 (弧度): " << angle << std::endl;
std::cout << "旋转轴: " << axis.transpose() << std::endl;

// 将轴角表示转换为旋转矩阵
Eigen::Matrix3d rotation_matrix = rotation.toRotationMatrix();
std::cout << "旋转矩阵:" << std::endl << rotation_matrix << std::endl;

return 0;
}

在上述示例中,我们创建了一个轴角表示的旋转对象,并使用成员函数获取旋转角度和旋转轴。然后,我们使用 toRotationMatrix() 函数将轴角表示转换为旋转矩阵。

Eigen::AngleAxisd 类是Eigen库中用于处理轴角旋转的重要工具,它使您能够方便地表示和操作旋转信息。您可以使用旋转矩阵来执行坐标变换,或将其与其他旋转进行组合。这对于机器人学、计算机图形学和仿真等领域非常有用。

Eigen::Matrix3d 数据结构 详解

Eigen::Matrix3d 是Eigen库中的一个数据结构,表示一个3x3的矩阵,其中d表示矩阵元素的数据类型为double。Eigen库是一个用于线性代数操作的C++库,提供了高性能的矩阵和向量运算,特别适用于数学和科学计算。

Eigen::Matrix3d 可以用来表示各种线性代数和几何学中的3x3矩阵,如旋转矩阵、变换矩阵、协方差矩阵等。这个数据结构在计算机图形学、机器人学、物理模拟等领域中经常被使用。

以下是一些关于Eigen::Matrix3d的详细信息和常见操作:

  1. 构造函数:您可以使用多种构造函数创建Eigen::Matrix3d对象。例如:

    1
    2
    Eigen::Matrix3d mat1; // 默认构造函数,创建零矩阵
    Eigen::Matrix3d mat2(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0); // 从给定的元素创建矩阵
  2. 元素访问:您可以通过行和列索引来访问矩阵的元素。Eigen库支持使用(i, j)ij索引方式,其中(i, j)表示第i行、第j列的元素,ij从0开始。

    1
    2
    double element = mat2(1, 2); // 访问第2行第3列的元素
    double element_row_col = mat2.row(1)[2]; // 也可以使用行和列的方式访问
  3. 矩阵运算:您可以对Eigen::Matrix3d对象执行各种矩阵运算,如矩阵加法、矩阵乘法、矩阵转置等。Eigen库提供了丰富的运算符重载和成员函数来进行这些操作。

    1
    2
    3
    Eigen::Matrix3d result = mat1 + mat2; // 矩阵加法
    Eigen::Matrix3d product = mat1 * mat2; // 矩阵乘法
    Eigen::Matrix3d transposed = mat1.transpose(); // 矩阵转置
  4. 单位矩阵:您可以使用Eigen::Matrix3d::Identity()来创建一个单位矩阵。

    1
    Eigen::Matrix3d identity = Eigen::Matrix3d::Identity();
  5. 行和列操作:Eigen库提供了许多操作来处理矩阵的行和列,如获取行、列、设置行、列等。

    1
    2
    3
    Eigen::Vector3d row_vector = mat2.row(1); // 获取第2行
    Eigen::Vector3d col_vector = mat2.col(2); // 获取第3列
    mat2.row(0) = Eigen::Vector3d(10.0, 20.0, 30.0); // 设置第1行的值
  6. 其他操作:Eigen库还提供了许多其他操作,如求逆、行列式计算、特征值分解等。

Eigen::Matrix3d 是Eigen库中一个非常有用的数据结构,用于表示和处理3x3矩阵数据。您可以使用它来执行各种线性代数和几何计算。Eigen库还支持其他矩阵大小的数据结构,如Eigen::Matrix4dEigen::MatrixXd(动态大小矩阵)等,以满足不同的需求。

Eigen::Vector3d 数据结构 详解

Eigen::Vector3d 是Eigen库中的一个数据结构,表示三维向量,其中d表示向量元素的数据类型为double。Eigen库是一个用于线性代数操作的C++库,提供了高性能的矩阵和向量运算,特别适用于数学和科学计算。

Eigen::Vector3d 表示一个包含三个double类型元素的向量,通常用于表示三维空间中的位置、方向或其他三维向量数据。这个数据结构在机器人学、计算机图形学、物理模拟等领域中经常被使用。

以下是一些关于Eigen::Vector3d的详细信息和常见操作:

  1. 构造函数:您可以使用多种构造函数创建Eigen::Vector3d对象。例如:

    1
    2
    Eigen::Vector3d v1;           // 默认构造函数,创建零向量 (0, 0, 0)
    Eigen::Vector3d v2(1.0, 2.0, 3.0); // 从给定的元素创建向量
  2. 元素访问:您可以通过下标或成员函数来访问向量的元素。例如:

    1
    2
    3
    4
    5
    6
    7
    8
    double x = v2[0]; // 访问第一个元素(x坐标)
    double y = v2[1]; // 访问第二个元素(y坐标)
    double z = v2[2]; // 访问第三个元素(z坐标)

    // 或者使用成员函数
    double x = v2.x();
    double y = v2.y();
    double z = v2.z();
  3. 向量运算:您可以对Eigen::Vector3d对象执行各种向量运算,如加法、减法、点积、叉积等。Eigen库提供了丰富的运算符重载和成员函数来进行这些操作。

    1
    2
    3
    4
    Eigen::Vector3d result = v1 + v2; // 向量加法
    Eigen::Vector3d diff = v1 - v2; // 向量减法
    double dot_product = v1.dot(v2); // 点积
    Eigen::Vector3d cross_product = v1.cross(v2); // 叉积
  4. 归一化:您可以使用成员函数将向量归一化为单位向量。

    1
    v2.normalize(); // 归一化v2为单位向量
  5. 长度和距离:您可以使用成员函数计算向量的长度(模)或两个点之间的距离。

    1
    2
    double length = v2.norm(); // 向量的长度
    double distance = (v1 - v2).norm(); // 两个点之间的距离
  6. 其他操作:Eigen库提供了许多其他操作,如向量的投影、反射、角度计算等。

Eigen::Vector3d 是Eigen库中一个非常有用的数据结构,用于表示和处理三维向量数据。您可以使用它来执行各种线性代数和几何计算。注意,Eigen库支持其他数据类型的向量,如Eigen::Vector3ffloat类型元素)和Eigen::Vector3iint类型元素)等,以满足不同的需求。

Eigen::Vector3f 详解

在C++中,Eigen是一个开源的线性代数库,用于高效地进行矩阵和向量计算。Eigen::Vector3f是Eigen库中表示三维浮点数向量的数据类型。

下面是对Eigen::Vector3f的详细解释:

  1. Eigen库
    Eigen是一个C++模板库,专注于线性代数运算。它提供了各种矩阵和向量操作,包括基本的线性代数运算、矩阵分解、特征值计算等。Eigen的设计目标是高性能和表达力,适用于各种科学计算和工程应用。

  2. Eigen::Vector3f
    Eigen::Vector3f是Eigen库中的一个模板类,表示一个三维浮点数向量。这个向量类包含了三个浮点数字段,分别表示向量的 x、y 和 z 分量。

    1
    2
    Eigen::Vector3f v;  // 声明一个三维浮点数向量
    v << 1.0, 2.0, 3.0; // 设置向量的 x、y 和 z 分量

    在Eigen中,向量和矩阵都是模板类,它们提供了许多重载的操作符和函数,使得线性代数运算变得方便和高效。

    使用Eigen::Vector3f时,您可以执行向量加法、减法、点积、叉积、标量乘法等操作,以及其他线性代数运算。例如:

    1
    2
    3
    4
    5
    6
    Eigen::Vector3f v1(1.0, 2.0, 3.0);
    Eigen::Vector3f v2(4.0, 5.0, 6.0);

    Eigen::Vector3f sum = v1 + v2;
    float dotProduct = v1.dot(v2);
    Eigen::Vector3f crossProduct = v1.cross(v2);

    此外,Eigen还提供了丰富的线性代数函数,使您能够执行向量的归一化、取模、求距离、求角度等操作。

总之,Eigen::Vector3f是Eigen库中用于表示三维浮点数向量的类型。它是Eigen库在处理线性代数运算时的基本构建块之一,方便高效地进行各种向量计算和分析。

Eigen 是什么

Eigen是一个用于线性代数运算的C++模板库。它提供了许多用于向量、矩阵、数组和其他线性代数对象的数学运算和操作。Eigen是一个开源库,具有高性能和易用性的特点,广泛用于科学计算、图形学、机器学习和机器人等领域。

以下是Eigen库的一些特点:

  1. 高性能:Eigen通过使用表达式模板技术和编译时优化,能够生成高效的代码,提供快速的数值计算。

  2. 简洁易用:Eigen提供了简洁的API,使得进行线性代数运算变得直观和易于理解。它支持类似于数学符号的语法,使得代码更加清晰和可读。

  3. 丰富的功能:Eigen提供了广泛的线性代数运算功能,包括矩阵和向量的基本运算(如加法、乘法、转置等)、线性方程求解、特征值计算、奇异值分解、矩阵分解等。

  4. 跨平台支持:Eigen是一个纯头文件库,没有外部依赖,可以方便地在不同的操作系统和编译器上使用。

  5. 可扩展性:Eigen支持自定义类型和运算,可以与现有的代码和数据结构集成,并方便地扩展功能。

Eigen的语法和用法类似于数学符号,使得编写线性代数相关的代码更加直观和易于维护。它被广泛应用于科学计算、机器学习、计算机图形学等领域,是C++中进行线性代数运算的常用工具库之一。

总结来说,Eigen是一个高性能、易用且功能丰富的C++线性代数库,用于进行矩阵、向量和其他线性代数对象的数学运算。


Eigen 详解

Eigen是一个C++模板库,用于进行线性代数运算和数值计算。它提供了丰富的线性代数功能,包括矩阵和向量的基本运算、线性方程求解、特征值计算、奇异值分解、矩阵分解等。以下是Eigen库的一些详细解释:

  1. 数据结构:Eigen库通过模板类来定义不同类型的线性代数对象,如矩阵(Matrix)、向量(Vector)、数组(Array)等。这些对象可以具有不同的维度和数据类型,如动态大小或静态大小的矩阵。

  2. 数学运算:Eigen提供了大量的数学运算操作符和函数,使得进行线性代数运算变得方便和直观。例如,你可以使用运算符进行矩阵和向量的加法、减法、乘法和除法操作,还可以进行转置、逆矩阵、点积、叉积等运算。

  3. 线性方程求解:Eigen提供了多种方法来求解线性方程组,包括常规的LU分解、QR分解、Cholesky分解等。你可以使用这些方法来解决线性方程组、最小二乘问题和最小化问题等。

  4. 特征值和奇异值计算:Eigen支持计算矩阵的特征值和特征向量,以及奇异值分解。这些计算对于矩阵的分析和特征提取非常有用。

  5. 矩阵分解:Eigen提供了多种矩阵分解的方法,如LU分解、QR分解、Cholesky分解等。这些分解方法可以用于解决矩阵方程、计算矩阵的逆等问题。

  6. 数值计算性能:Eigen通过使用表达式模板技术和编译时优化,生成高效的代码,提供了出色的数值计算性能。它能够自动进行向量化和并行化处理,以充分利用现代计算机的硬件特性。

  7. 跨平台支持:Eigen是一个纯头文件库,没有外部依赖,可以在不同的操作系统和编译器上进行使用。它与标准的C++语法和库相容,易于集成到现有的C++项目中。

Eigen是一个广泛应用于科学计算、机器学习、计算机图形学等领域的工具库。它提供了强大的线性代数功能和高性能的数值计算能力,使得进行复杂的数学运算变得更加简单和高效。

如果你需要更详细的信息和示例代码,可以参考Eigen官方文档和示例。


Eigen 官网

Eigen的官方网站是:https://eigen.tuxfamily.org/

在Eigen官网上,你可以找到关于Eigen库的详细文档、示例代码、教程和其他资源。以下是一些在Eigen官网上可以找到的主要内容:

  1. 文档:Eigen官网提供了全面的文档,包括用户手册、快速入门指南、API参考等。文档详细介绍了Eigen库的各个方面,包括使用方法、功能特性、使用示例等。

  2. 示例代码:Eigen官网提供了大量的示例代码,涵盖了各种线性代数运算和数值计算的常见用法。这些示例代码可以帮助你快速上手并理解Eigen库的使用方法。

  3. 教程:Eigen官网上提供了一些教程和指南,帮助你深入了解Eigen库的内部机制和高级功能。这些教程涵盖了Eigen的设计原理、性能优化技巧、高级数学运算等方面的内容。

  4. 下载和安装:Eigen官网提供了源代码的下载链接和安装指南。你可以根据自己的需要下载适合的版本,并按照安装指南进行配置和编译。

  5. 社区和支持:Eigen官网上有用户论坛和邮件列表,你可以在这里与其他用户交流经验、提问问题和寻求帮助。此外,官方网站还提供了联系开发团队的方式,以便于反馈bug、提供反馈和建议等。

通过Eigen官方网站,你可以获取关于Eigen库的最新信息、更新、支持和社区交流。如果你对Eigen库有兴趣或需要使用它进行线性代数运算和数值计算,官方网站是一个很好的起点。

请注意,由于网站内容可能会有更新,建议你访问Eigen官方网站以获取最新的信息和资源。


Eigen 示例

以下是一个简单的示例,展示了Eigen库的基本用法和一些常见的线性代数运算:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include <iostream>
#include <Eigen/Dense>

int main() {
// 创建矩阵
Eigen::Matrix3f A;
A << 1, 2, 3,
4, 5, 6,
7, 8, 9;

// 创建向量
Eigen::Vector3f b(1, 2, 3);

// 解线性方程 Ax = b
Eigen::Vector3f x = A.lu().solve(b);

// 输出结果
std::cout << "Solution:\n" << x << std::endl;

// 计算特征值和特征向量
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eigensolver(A);
if (eigensolver.info() != Eigen::Success) {
std::cout << "Failed to compute eigenvalues!" << std::endl;
return 1;
}
std::cout << "Eigenvalues:\n" << eigensolver.eigenvalues() << std::endl;
std::cout << "Eigenvectors:\n" << eigensolver.eigenvectors() << std::endl;

return 0;
}

在这个示例中,我们首先创建了一个3x3的矩阵A和一个3维向量b。然后,使用A.lu().solve(b)求解线性方程Ax = b,得到解x。我们输出了解x的值。

接下来,我们使用Eigen库的SelfAdjointEigenSolver来计算矩阵A的特征值和特征向量。通过eigensolver.eigenvalues()和eigensolver.eigenvectors(),我们分别获取了特征值和特征向量,并将它们输出到控制台。

请确保在使用这个示例之前,已经正确安装了Eigen库,并将其包含路径配置正确。

这只是Eigen库的一个简单示例,Eigen库还提供了许多其他功能和操作,如矩阵乘法、逆矩阵、奇异值分解等。你可以在Eigen的官方文档和示例中找到更多详细的用法和示例代码。


Eigen 安装第三方库

在Linux系统上安装Eigen库可以按照以下步骤进行操作:

  1. 打开终端,并确保你的系统已经安装了C++编译器和CMake工具。

  2. 下载Eigen库的源代码。你可以从Eigen的官方网站(https://eigen.tuxfamily.org/)下载最新版本的源代码压缩包,或者使用Git进行克隆。

    例如,使用Git进行克隆:

    1
    git clone https://gitlab.com/libeigen/eigen.git
  3. 进入Eigen源代码的目录:

    1
    cd eigen
  4. 创建一个用于构建Eigen库的目录,并进入该目录:

    1
    mkdir build && cd build
  5. 运行CMake命令生成构建文件:

    1
    cmake ..
  6. 使用make命令进行编译:

    1
    make
  7. (可选)运行make install命令将库安装到系统目录中:

    1
    sudo make install

    注意:执行make install命令可能需要root权限。

现在,你已经成功在Linux系统上安装了Eigen库。你可以在自己的C++项目中包含Eigen的头文件,并链接Eigen库进行使用。

例如,在你的C++源文件中,使用以下方式包含Eigen的头文件:

1
#include <Eigen/Dense>

然后,你就可以使用Eigen库提供的各种功能进行线性代数运算和数值计算了。

请注意,安装过程中的具体命令可能会因系统环境和Eigen库的版本而有所不同。建议在安装过程中仔细阅读Eigen的文档,并按照其中的指导进行操作。

另外,如果你使用的是特定的Linux发行版,也可以尝试通过包管理器安装Eigen库。例如,使用apt包管理器安装Eigen:

1
sudo apt-get install libeigen3-dev

这将自动安装Eigen库及其相关的开发文件到系统中,使你能够在C++项目中直接使用Eigen库。

头文件

在使用Eigen库时,你可以根据需要包含不同的头文件。以下是一些常用的Eigen头文件:

  1. Eigen/Dense:包含了Eigen库的核心功能,如矩阵、向量和数组的定义和运算符重载。

  2. Eigen/Core:提供了Eigen库的基本功能和类型定义,是Eigen/Dense头文件的核心部分。

  3. Eigen/Eigenvalues:包含了计算矩阵特征值和特征向量的功能。

  4. Eigen/SVD:提供了奇异值分解(Singular Value Decomposition,SVD)的功能。

  5. Eigen/QR:提供了QR分解的功能。

  6. Eigen/LU:提供了LU分解的功能。

  7. Eigen/Cholesky:提供了Cholesky分解的功能。

  8. Eigen/Geometry:包含了用于几何计算的功能,如旋转矩阵、变换矩阵等。

这只是一小部分常用的Eigen头文件。根据你的具体需求,你可能还需要包含其他特定的头文件。Eigen库的头文件结构清晰,你可以根据你的具体使用情况选择包含适当的头文件。

例如,在你的C++源文件中,你可以按照以下方式包含Eigen库的头文件:

1
2
3
4
#include <Eigen/Dense>          // 包含核心功能
#include <Eigen/Eigenvalues> // 计算特征值和特征向量
#include <Eigen/SVD> // 奇异值分解
#include <Eigen/QR> // QR分解

请注意,在包含Eigen库的头文件之前,确保你已经正确安装并配置了Eigen库。同时,根据你的操作系统和安装方式,可能需要调整头文件的路径。

希望这些信息能帮助你使用Eigen库进行C++编程!

感谢老板支持!敬礼(^^ゞ